Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The elicitor cryptogein blocks glucose transport in tobacco cells.

Identifieur interne : 002544 ( Main/Exploration ); précédent : 002543; suivant : 002545

The elicitor cryptogein blocks glucose transport in tobacco cells.

Auteurs : Stéphane Bourque [France] ; Rémi Lemoine ; Anabelle Sequeira-Legrand ; Léon Fayolle ; Serge Delrot ; Alain Pugin

Source :

RBID : pubmed:12481101

Descripteurs français

English descriptors

Abstract

Cryptogein is a 10-kD protein secreted by the oomycete Phytophthora cryptogea that induces a hypersensitive response on tobacco (Nicotiana tabacum var. Xanthi) plants and a systemic acquired resistance against various pathogens. The mode of action of this elicitor has been studied using tobacco cell suspensions. Our previous data indicated that within minutes, cryptogein signaling involves various events including changes in ion fluxes, protein phosphorylation, sugar metabolism, and, eventually, cell death. These results suggested that transport of sugars could be affected and, thus, involved in the complex relationships between plant and microorganisms via elicitors. This led us to investigate the effects of cryptogein on glucose (Glc) uptake and mitochondrial activity in tobacco cells. Cryptogein induces an immediate inhibition of Glc uptake, which is not attributable to plasma membrane (PM) depolarization. Conversely, cryptogein-induced valine uptake is because of PM depolarization. Inhibition of the PM Glc transporter(s) was shown to be mediated by a calcium-dependent phosphorylation process, and is independent of active oxygen species production. This inhibition was associated with a strong decrease in O(2) uptake rate by cells and a large mitochondrial membrane depolarization. Thus, inhibition of Glc uptake accompanied by inhibition of phosphorylative oxidation may participate in hypersensitive cell death. These results are discussed in the context of competition between plants and microorganisms for apoplastic sugars.

DOI: 10.1104/pp.009449
PubMed: 12481101
PubMed Central: PMC166729


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The elicitor cryptogein blocks glucose transport in tobacco cells.</title>
<author>
<name sortKey="Bourque, Stephane" sort="Bourque, Stephane" uniqKey="Bourque S" first="Stéphane" last="Bourque">Stéphane Bourque</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unité Mixte de Recherche-Institut National de la Recherche Agronomique/Université de Bourgogne, Biochimie, Biologie Cellulaire, et Ecologie des Interactions Plantes/Micro-organismes, 17 Rue Sully, BV 86510-21065 Dijon cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Unité Mixte de Recherche-Institut National de la Recherche Agronomique/Université de Bourgogne, Biochimie, Biologie Cellulaire, et Ecologie des Interactions Plantes/Micro-organismes, 17 Rue Sully, BV 86510-21065 Dijon cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Poitou-Charentes</region>
<settlement type="city">Dijon</settlement>
</placeName>
<orgName type="university">Université de Bourgogne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lemoine, Remi" sort="Lemoine, Remi" uniqKey="Lemoine R" first="Rémi" last="Lemoine">Rémi Lemoine</name>
</author>
<author>
<name sortKey="Sequeira Legrand, Anabelle" sort="Sequeira Legrand, Anabelle" uniqKey="Sequeira Legrand A" first="Anabelle" last="Sequeira-Legrand">Anabelle Sequeira-Legrand</name>
</author>
<author>
<name sortKey="Fayolle, Leon" sort="Fayolle, Leon" uniqKey="Fayolle L" first="Léon" last="Fayolle">Léon Fayolle</name>
</author>
<author>
<name sortKey="Delrot, Serge" sort="Delrot, Serge" uniqKey="Delrot S" first="Serge" last="Delrot">Serge Delrot</name>
</author>
<author>
<name sortKey="Pugin, Alain" sort="Pugin, Alain" uniqKey="Pugin A" first="Alain" last="Pugin">Alain Pugin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12481101</idno>
<idno type="pmid">12481101</idno>
<idno type="doi">10.1104/pp.009449</idno>
<idno type="pmc">PMC166729</idno>
<idno type="wicri:Area/Main/Corpus">002598</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002598</idno>
<idno type="wicri:Area/Main/Curation">002598</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002598</idno>
<idno type="wicri:Area/Main/Exploration">002598</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The elicitor cryptogein blocks glucose transport in tobacco cells.</title>
<author>
<name sortKey="Bourque, Stephane" sort="Bourque, Stephane" uniqKey="Bourque S" first="Stéphane" last="Bourque">Stéphane Bourque</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unité Mixte de Recherche-Institut National de la Recherche Agronomique/Université de Bourgogne, Biochimie, Biologie Cellulaire, et Ecologie des Interactions Plantes/Micro-organismes, 17 Rue Sully, BV 86510-21065 Dijon cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Unité Mixte de Recherche-Institut National de la Recherche Agronomique/Université de Bourgogne, Biochimie, Biologie Cellulaire, et Ecologie des Interactions Plantes/Micro-organismes, 17 Rue Sully, BV 86510-21065 Dijon cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Poitou-Charentes</region>
<settlement type="city">Dijon</settlement>
</placeName>
<orgName type="university">Université de Bourgogne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lemoine, Remi" sort="Lemoine, Remi" uniqKey="Lemoine R" first="Rémi" last="Lemoine">Rémi Lemoine</name>
</author>
<author>
<name sortKey="Sequeira Legrand, Anabelle" sort="Sequeira Legrand, Anabelle" uniqKey="Sequeira Legrand A" first="Anabelle" last="Sequeira-Legrand">Anabelle Sequeira-Legrand</name>
</author>
<author>
<name sortKey="Fayolle, Leon" sort="Fayolle, Leon" uniqKey="Fayolle L" first="Léon" last="Fayolle">Léon Fayolle</name>
</author>
<author>
<name sortKey="Delrot, Serge" sort="Delrot, Serge" uniqKey="Delrot S" first="Serge" last="Delrot">Serge Delrot</name>
</author>
<author>
<name sortKey="Pugin, Alain" sort="Pugin, Alain" uniqKey="Pugin A" first="Alain" last="Pugin">Alain Pugin</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algal Proteins (pharmacology)</term>
<term>Apoptosis (drug effects)</term>
<term>Biological Transport (drug effects)</term>
<term>Calcium (metabolism)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Fungal Proteins (MeSH)</term>
<term>Glucose (metabolism)</term>
<term>Immunity, Innate (drug effects)</term>
<term>Mitochondrial Membrane Transport Proteins (metabolism)</term>
<term>Monosaccharide Transport Proteins (metabolism)</term>
<term>Oxygen (metabolism)</term>
<term>Phosphorylation (drug effects)</term>
<term>Phytophthora (chemistry)</term>
<term>Phytophthora (growth & development)</term>
<term>Plant Diseases (microbiology)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Tobacco (cytology)</term>
<term>Tobacco (metabolism)</term>
<term>Tobacco (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Apoptose (effets des médicaments et des substances chimiques)</term>
<term>Calcium (métabolisme)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Glucose (métabolisme)</term>
<term>Immunité innée (effets des médicaments et des substances chimiques)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Oxygène (métabolisme)</term>
<term>Phosphorylation (effets des médicaments et des substances chimiques)</term>
<term>Phytophthora (composition chimique)</term>
<term>Phytophthora (croissance et développement)</term>
<term>Protéines d'algue (pharmacologie)</term>
<term>Protéines de transport de la membrane mitochondriale (métabolisme)</term>
<term>Protéines fongiques (MeSH)</term>
<term>Tabac (cytologie)</term>
<term>Tabac (microbiologie)</term>
<term>Tabac (métabolisme)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
<term>Transport biologique (effets des médicaments et des substances chimiques)</term>
<term>Transporteurs de monosaccharides (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcium</term>
<term>Glucose</term>
<term>Mitochondrial Membrane Transport Proteins</term>
<term>Monosaccharide Transport Proteins</term>
<term>Oxygen</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Algal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Apoptosis</term>
<term>Biological Transport</term>
<term>Immunity, Innate</term>
<term>Phosphorylation</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Apoptose</term>
<term>Immunité innée</term>
<term>Phosphorylation</term>
<term>Transduction du signal</term>
<term>Transport biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Calcium</term>
<term>Espèces réactives de l'oxygène</term>
<term>Glucose</term>
<term>Oxygène</term>
<term>Protéines de transport de la membrane mitochondriale</term>
<term>Tabac</term>
<term>Transporteurs de monosaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Protéines d'algue</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cells, Cultured</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules cultivées</term>
<term>Protéines fongiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cryptogein is a 10-kD protein secreted by the oomycete Phytophthora cryptogea that induces a hypersensitive response on tobacco (Nicotiana tabacum var. Xanthi) plants and a systemic acquired resistance against various pathogens. The mode of action of this elicitor has been studied using tobacco cell suspensions. Our previous data indicated that within minutes, cryptogein signaling involves various events including changes in ion fluxes, protein phosphorylation, sugar metabolism, and, eventually, cell death. These results suggested that transport of sugars could be affected and, thus, involved in the complex relationships between plant and microorganisms via elicitors. This led us to investigate the effects of cryptogein on glucose (Glc) uptake and mitochondrial activity in tobacco cells. Cryptogein induces an immediate inhibition of Glc uptake, which is not attributable to plasma membrane (PM) depolarization. Conversely, cryptogein-induced valine uptake is because of PM depolarization. Inhibition of the PM Glc transporter(s) was shown to be mediated by a calcium-dependent phosphorylation process, and is independent of active oxygen species production. This inhibition was associated with a strong decrease in O(2) uptake rate by cells and a large mitochondrial membrane depolarization. Thus, inhibition of Glc uptake accompanied by inhibition of phosphorylative oxidation may participate in hypersensitive cell death. These results are discussed in the context of competition between plants and microorganisms for apoplastic sugars.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12481101</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>05</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>130</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2002</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>The elicitor cryptogein blocks glucose transport in tobacco cells.</ArticleTitle>
<Pagination>
<MedlinePgn>2177-87</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Cryptogein is a 10-kD protein secreted by the oomycete Phytophthora cryptogea that induces a hypersensitive response on tobacco (Nicotiana tabacum var. Xanthi) plants and a systemic acquired resistance against various pathogens. The mode of action of this elicitor has been studied using tobacco cell suspensions. Our previous data indicated that within minutes, cryptogein signaling involves various events including changes in ion fluxes, protein phosphorylation, sugar metabolism, and, eventually, cell death. These results suggested that transport of sugars could be affected and, thus, involved in the complex relationships between plant and microorganisms via elicitors. This led us to investigate the effects of cryptogein on glucose (Glc) uptake and mitochondrial activity in tobacco cells. Cryptogein induces an immediate inhibition of Glc uptake, which is not attributable to plasma membrane (PM) depolarization. Conversely, cryptogein-induced valine uptake is because of PM depolarization. Inhibition of the PM Glc transporter(s) was shown to be mediated by a calcium-dependent phosphorylation process, and is independent of active oxygen species production. This inhibition was associated with a strong decrease in O(2) uptake rate by cells and a large mitochondrial membrane depolarization. Thus, inhibition of Glc uptake accompanied by inhibition of phosphorylative oxidation may participate in hypersensitive cell death. These results are discussed in the context of competition between plants and microorganisms for apoplastic sugars.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bourque</LastName>
<ForeName>Stéphane</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Unité Mixte de Recherche-Institut National de la Recherche Agronomique/Université de Bourgogne, Biochimie, Biologie Cellulaire, et Ecologie des Interactions Plantes/Micro-organismes, 17 Rue Sully, BV 86510-21065 Dijon cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lemoine</LastName>
<ForeName>Rémi</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sequeira-Legrand</LastName>
<ForeName>Anabelle</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fayolle</LastName>
<ForeName>Léon</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Delrot</LastName>
<ForeName>Serge</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pugin</LastName>
<ForeName>Alain</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020418">Algal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033681">Mitochondrial Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009004">Monosaccharide Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C061032">cryptogein protein, Phytophthora cryptogea</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020418" MajorTopicYN="N">Algal Proteins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033681" MajorTopicYN="N">Mitochondrial Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009004" MajorTopicYN="N">Monosaccharide Transport Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12481101</ArticleId>
<ArticleId IdType="doi">10.1104/pp.009449</ArticleId>
<ArticleId IdType="pmc">PMC166729</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1995 Sep;109(1):285-292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Nov;109(3):1025-1031</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Jan;104(1):209-215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1996 Jun 11;1281(2):213-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8664320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Dec;8(12):2169-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8989877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Oct;88(2):429-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1993 Nov 30;197(1):40-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8250945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Sep;15(6):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9807816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Feb;125(2):564-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2627-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Aug;123(4):1507-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1993 Apr;34(3):439-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8019782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Sep;94(1):268-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Jan;9(1):5-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9014361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Apr;104(4):1245-1249</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1937-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 1998 Aug-Sep;379(8-9):1127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9792446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Jan;71(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Aug;93(4):1590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Feb;10(2):255-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1979 Jul 5;554(2):460-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">158388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Mar 27;515(1-3):75-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11943198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Apr;6(4):177-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11286923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 3;274(49):34699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10574936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Aug;13(8):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10939253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Sep;115(1):7-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 May 1;1465(1-2):281-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10748261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Aug 12;78(3):449-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8062387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Dec;124(4):1532-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11115871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Jan;101(1):297-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2751-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Sep;23(6):817-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10998192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 1999 Jun;81(6):663-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10433120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Mar 13;424(3):165-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Feb 4;397(6718):441-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9989411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Oct 30;374(2):203-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7589535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Nov;9(11):2077-2091</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12237354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Dec;118(4):1317-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847105</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Nouvelle-Aquitaine</li>
<li>Poitou-Charentes</li>
</region>
<settlement>
<li>Dijon</li>
</settlement>
<orgName>
<li>Université de Bourgogne</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Delrot, Serge" sort="Delrot, Serge" uniqKey="Delrot S" first="Serge" last="Delrot">Serge Delrot</name>
<name sortKey="Fayolle, Leon" sort="Fayolle, Leon" uniqKey="Fayolle L" first="Léon" last="Fayolle">Léon Fayolle</name>
<name sortKey="Lemoine, Remi" sort="Lemoine, Remi" uniqKey="Lemoine R" first="Rémi" last="Lemoine">Rémi Lemoine</name>
<name sortKey="Pugin, Alain" sort="Pugin, Alain" uniqKey="Pugin A" first="Alain" last="Pugin">Alain Pugin</name>
<name sortKey="Sequeira Legrand, Anabelle" sort="Sequeira Legrand, Anabelle" uniqKey="Sequeira Legrand A" first="Anabelle" last="Sequeira-Legrand">Anabelle Sequeira-Legrand</name>
</noCountry>
<country name="France">
<region name="Nouvelle-Aquitaine">
<name sortKey="Bourque, Stephane" sort="Bourque, Stephane" uniqKey="Bourque S" first="Stéphane" last="Bourque">Stéphane Bourque</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002544 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002544 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12481101
   |texte=   The elicitor cryptogein blocks glucose transport in tobacco cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12481101" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024